1 .Lagrange,J.L.( 1 9 9 5 ). Me’caniqueAnalitique, Complete Edition, joining the notes of the 3rd Edition revised, corrected, and annotated by Joseph Bertrand, and those of the 4th Edition published under the direction of Gaston Darboux; Albert Blanchard, Paris, France
2.Bussotti, P. (2003). On the Genesis of the Lagrange Multipliers. Journal of optimization theory and applications: 117(3): 453-459
3.Armijo, L. (1966). Minimization of functions having continuous partial derivatives. Pacific J.Math. 16, 1-3
4.Bertsekas, Dimitri P. (1996). Constrained Optimization and Lagrange multiplier Methods. Athena Scientific, Belmont, Massachusetts. 410p.
5.Bertsekas, Dimitri P (1973). Convergence rate of penalty and multipliers methods. Proc. 1973 IEEE Confer, Decision Control, San Diego, Calif, pp. 260-264
6.Bertsekas, Dimitri P (1976). On penalty and multiplier methods for constrained optimization. S.J.C.O. 14,216-235
7.Fletcher, R.(1970). A class of methods for nonlinear programming with termination and convergence properties. In “Integer and NonlinearProgramming” (J.Abadie,ed.),pp .157 -173 . North-Holland Publ, Amsterdam
8.Fletcher, R.(1973). A class of methods for nonlinear programming:III. Rates of convergence. In “Numerical methods for Nonlinear Optimization” (F.A.Lootsma,ed.), pp.371-381. Academic Press, New York
9.Fletcher, R.,andPowell,M.J.D.(1963).A rapidly convergent descent algorithm for minimization. Comput.J.6.163- 168
10.Fletcher, R.,andReeves,C.M.(1964), Function minimization by conjugate gradients. Compt.J.7.149-154