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Introduction 

 

Intelligence is the ability to think rationally, learn effectively, understand complex ideas, and 

adapt to the environment. Accordingly, intelligence is best seen as a general ability that can 

influence performance on a wide range of cognitive tasks. IQ (the intelligence quotient) is 

the quantification of an individual’s intelligence relative to peers of a similar age. IQ is one of the 

most heritable psy- chological traits, and an individual’s score on a modern IQ test is a good 

predictor of many life outcomes, including educational and career suc- cess, health, 

longevity, and even happiness (Gottfredson 1998). Like humans, several species of animals 

express a “general cognitive ability” that influences performance on broad and diverse 

cognitive tasks, and moreover, animals exhibit a wide range of individual variations in this 

ability. 

Intelligence and Intelligence Testing (IQ) in Humans 

It has long been recognized that intelligence varies across individuals. Colloquially, we 

refer to someone as “brilliant” or comment that our dog is a “little dull.” While it is easy 

(and common) to make these kind of characterizations, it has histor- ically been difficult to 

formulate a definition of this trait. In 1995, a committee of the American Psychological 

Association stated that “Individ- uals differ from one another in their ability to understand 

complex ideas, to adapt effectively to the environment, to learn from experience, to engage 

in various forms of reasoning, to over- come obstacles by taking thought. Concepts of 

‘intelligence’ are attempts to clarify and organize this complex set of phenomena” (Neisser 

et al. 1996). In an article in the Wall Street Journal (December 13, 1994) signed by 52 

intelligence researchers, it was asserted that intelligence was “a very general mental 

capability that, among other things, involves the ability to reason, plan, solve problems, 

think abstractly, comprehend complex ideas, learn quickly and learn from expe- rience. It 

reflects a broader and deeper capability for comprehending our surroundings.” 

The above definitions are simultaneously vague and broad. Although provided by 

experts on intelligence, they differ little (if only in form) from colloquial descriptions of 

the trait that one might hear from a random sample of college undergraduates. While it 

has been more than 

100 years since Spearman (1904) formally described the concept of “general intelligence” 

(also called “g”), we still struggle with its defini- tion, but nevertheless, we recognize it 

and we make inferences about its consequences. In this regard, the quantification of 

intelligence is best relegated to performance on psychometric tests. 

The rationale for most psychometric tests is roughly based on Spearman’s early observation 

that performance on a wide range of cognitive tasks is positively correlated (i.e., if you 

perform well on one, you tend to perform well on others) and, as such, can be reduced to a 

single index of aggregate performance across a battery of diverse tests. In fact, psychometric 

tests (e.g., the Stanford-Binet, the Wechsler or WAIS, and the Raven’s Progressive Matrixes 



or RPM) do differ in their content and structure. For instance, the Stanford-Binet includes 

questions that are cultur- ally relevant and thus is best suited to predict performance in a 

particular culture’s school sys- tem. The WAIS is less culturally  

 

biased but, like the Stanford-Binet, includes categories of ques- tions that are presumed to 

reflect domains of abil- ities (verbal comprehension, working memory, perceptual reasoning, 

processing speed). An indi- vidual’s performance on tests within a particular domain (e.g., 

reasoning) tends to be highly corre- lated, while performance on tests across domains (e.g., a 

reasoning task and a spatial task) is usually less correlated. Nevertheless, positive correlations 

are observed between performance on all tests in the battery. This is in line with the 

conclusion that all cognitive abilities are regulated (to varying degrees) by one general 

factor, or  

 

 

 

Spearman’s “g,” while other specific abilities might influence performance within a 

particular domain. These kinds of observations have led to the development of hierarchical 

models regarding the structure of intelligence, where g influences domains of spe- cific 

abilities, which influence tasks within those domains. An illustration of a hierarchical model 

is provided in Fig.  

Since many studies on intelligence use factors analyses, a brief explanation of this 

technique is warranted. Briefly, a factor analysis is a statistical method which reduces a large 

number of correla- tions into as few explanatory factors as possible. If, for example, all of the 

correlations across sev- eral tests of cognitive ability are strongly positive, the factor analysis 

recognizes that a common source of variance contributed to performance on all tasks, and this 

would be described as a general factor. In reality, the outcome of such an analysis can be 

much more complicated, and of course we 

might be interested in large numbers of cognitive tasks, some of which represent clusters of 

what are presumed to be specialized abilities. In these cases, the factor analysis might 

extract a general factor, as well as secondary factors, which explain relationships between 

only subsets of the tasks being considered. Of course, if no single source of variance was 

common to all tasks, a factor analysis might reveal no common factor at all. When factor 

analyses are performed on human intelligence test data (such as from the WAIS), it is 

typical to find a general factor (i.e., general intelligence) as well as secondary factors that 

describe specific cognitive domains (e.g., spatial abilities; see Fig. 1). 

Remember that the Stanford-Binet and the WAIS include tests of many different abilities, 

and an individual’s aggregate performance across all of these tests is used to estimate that 

individ- ual’s intelligence. In contrast, the RPM is an intel- ligence test that is based 

exclusively on only one ability and, accordingly, includes only progres- sively difficult tests 

of perceptual (analogical) rea- soning. This test structure is based on an assumption that 

reasoning is representative of the core ability that regulates all intelligence (Raven et al. 

1998). Because of its format, the RPM requires no knowledge of culture or language. 

Unlike a qualitative description of intelligence, the IQ score is a quotient, that is, it is an 

individ- ual’s score on a standardized test relative to that individual’s age-matched peers. It 

is true that an individual’s IQ score will tend to remain stable across the lifespan, i.e., the IQ 



scores of a group of 8-year-olds will be highly correlated with their scores at 90 years of 

age (r = ~.80). This does not mean that individual’s raw cognitive ability is the same across 

the lifespan. For example, were we to administer an RPM to one individual at 8, 25, 50, and 

90 years of age, the number of correct answers would be about the same at 8 and 90 years 

of age, while at 25, the individual would answer at least twice as many questions correctly 

(with the 50-year-old somewhere in between). So why do we say that an individual’s IQ 

remains constant across the lifespan? Because IQ is approximately unchanging relative to 

persons of a similar age,i.e., a person who is smarter than most of his/her peers at 8 years of 

age will be smarter than his/her peers at 50 and 90 years of age (Deary 2014), despite the 

inevitable truth that our cognitive abil- ities decline with age. 

Regarding the nature of intelligence or IQ, many persons will incorrectly assume that high 

intelligence is necessarily reflected in a high level of knowledge. In fact, high intelligence 

promotes the ease with which we acquire knowledge, but intelligence itself is independent 

of knowledge. Why then do some IQ tests (such as the Stanford-Binet) have components that 

test knowl- edge? Simply because all other things being equal, a smarter individual is likely 

to acquire more knowledge. Learning is easier for that indi- vidual than it might be to 

someone of lesser intel- ligence. In this regard, scholastic aptitude tests such as the SAT are 

often a good approximation of intelligence as measured on a knowledge-free test such as the 

RPM (r = .5–.6). However, knowledge and intelligence need not always be related. For 

instance, an individual with innately high intelligence might (through some act of fate) live in 

an impoverished environment where the opportunities to acquire knowledge are severely 

limited. This is exactly why an IQ test such as the RPM has no measures of knowledge 

(only per- ceptual reasoning) and is considered by many to be a more pure measure of 

innate ability. 

Given the different content and structure of psychometric intelligence tests, it might be sur- 

prising to find that individuals’ scores on these tests are strongly correlated (rs will typically 

range from 0.8 to 0.9). Even more surprising is the popular assertion (sometimes even by 

some with advanced degrees in psychology) that “IQ tests measure nothing of functional 

significance.” Standardized intelligence tests first received wide- spread recognition owing 

to the US government’s use of a modified version of the early Stanford- Binet to determine 

assignments of new recruits in World War I. These assignments were highly effective 

(relative to the previous practice of assignments based on patronage or chance) and are 

widely regarded as having contributed to the USA’s success in WWI. Since that time, we 

have collected a wide array of data regarding the pre- dictive capacity of IQ tests. For 

instance, a child’s IQ score is highly predictive of obvious outcomes such as educational 

and career success, as well as lifetime income. But IQ test performance predicts many less 

obvious outcomes such as the distance one will travel from his/her place of birth, the 

likelihood of incarceration, the likelihood of drug addiction, the age of death, incidence of 

type II diabetes, ratings of happiness, and even your spouse’s income and IQ (for a 

comprehen- sive review of the predictive capacity of the IQ test, see Gottfredson 1998). IQ 

scores are even inversely related to the likelihood that an individ- ual will murder their 

spouse! To quote Gottfredson (1998, page 24), “No matter their form or content, tests of 

mental skills invariably point to the existence of a global factor that per- meates all aspects 

of cognition. This factor seems to have considerable influence on a person’s prac- tical quality 

of life. Intelligence as measured by IQ tests is the single most effective predictor known of 

individual performance at school and on the job” as well as many other aspects of well-



being. Thus, far from being a “social construct” with no functional significance, the modern 

IQ test is a highly effective (and widely used) diagnostic and predictive tool. 
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IQ,The hierarchical model of intelligence. Level 1 represents specific tests that are 

emblematic of various domains of cognitive ability. Some potential domains are illustrated in 

Level 2. The number and content of these domains is a matter of some debate, although there 

is wide agreement on the existence of the four domains that are illustrated. The fifth domain 

(?) acknowledges that other domains may exist. People who perform well on tasks from one 

domain tend to perform well on tasks from other domains. This suggests the existence of a 

general influence on cognitive abilities, represented in Level 3. This general influence is 

commonly referred to as general intelligence or simply “intelligence.” This model does not 

require only one type of intelligence. Rather, it assumes that a general ability influence other 

more domain-specific abilities. 
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Intelligence in Nonhuman Animals 

Although studies of individual differences in ani- mal intelligence had been frequent early in 

the twentieth century (Thorndike 1911, 1935; Tolman 1924; Tryon 1940), the emergent focus 

on exper- imental (rather than correlational) studies tended to limit the interest in this topic in 

the later part of that century. However, during the past two decades, interest in individual 

differences in ani- mal intelligence has seen a dramatic reemergence. As discussed above, 

contemporary definitions of intelligence tend to be vague, broad, and, to some degree, a 

matter of debate (Sternberg 1985). Nev- ertheless, psychometric tests of intelligence do 

appear to characterize a trait captured in both colloquial and empirical definitions of intelli- 

gence, i.e., the ability to understand, learn, and reason. To explore a trait analogous to 

intelligence in nonhuman animals, researchers have developed tests to characterize a similar 

set of skills, most notably in mice and monkeys. 

Genetically heterogeneous mice (i.e., mice with genetic variability that translates into mea- 

surable individual differences) have been tested on large batteries of cognitive tasks to 

determine the existence of a general cognitive ability in mice analogous to IQ. In one such 

study (Kolata et al. 2008), 241 mice were tested on seven cognitive tasks, which included 

tests of working memory capacity, associative learning, operant learning, and spatial learning 

abilities. Using factor analy- sis, it was observed that a general factor influenced performance 

in these mice and this factor accounted for 38% of the variance across tasks. This is 

comparable to what is known from tests of humans’ abilities, where it is believed that general 

intelligence accounts for 40–50% of the variance in performance across a broad array of 

cognitive tests. In addition, a domain-specific fac- tor was found to account for the 

performance of mice on a subset of tasks that shared a dependence on spatial processing. 

These results provide evi- dence for a general learning/cognitive factor in genetically 

heterogeneous mice. Furthermore (and similar to human cognitive performance), these results 

suggest a hierarchical structure (see Fig. 1) of cognitive abilities in mice, where a general 

factor influences performance on sub- domains of abilities. Importantly, mice also exhibited 

considerable variability in their general cognitive performance. In fact, the general abili- ties 

of mice were normally distributed, such that most mice expressed average abilities, while 

some were “bright” (performing well on all tasks), while some were “dull” (performing 

poorly on all tasks). 

As described above, reasoning is considered to be a hallmark of intelligence and is 

considered by some to be the general factor that underlies varia- tions in intelligence. It has 

previously been established that humans are capable of “fast map- ping” (Carey and Bartlett 

1978), a process whereby a new concept can be acquired based on a logical inference, 

corresponding with Aristotle’s descrip- tion of deductive reasoning. Fast mapping is believed 

to play a critical role in the extraordinarily rapid acquisition of information during early 

human development and explains (in part) the pro- digious rate at which children gain 

vocabulary. For example, when faced with a group of familiar items described by familiar 

words, an infant will quickly associate an unfamiliar word with a novel item added to the set 

of familiar items, and this associ- ation requires no overt “pairing” of the novel word and its 

corresponding novel item. 



Fast mapping based on responses to human language has also been demonstrated in dogs 

(Tomasello and Kaminski 2004; Pilley and Reid 2011), where border collies can successfully 

find a novel object when commanded (with a novel word) to retrieve that novel object from 

within a large set of familiar objects. Using a similar strat- egy, fast mapping has been 

assessed in mice, although the task was not based on responses to language. Mice were first 

trained to associate pairs of objects, where, upon exposure to a sample object, the correct 

choice of a target object earned the mouse a food reward. Following training, the mice could 

successfully use the sample object to guide its choice of a target object out of a set of familiar 

objects. (This type of performance is emblematic of “paired associate learning.”) To test “fast 

mapping,” the animal was then presented with a novel sample object and allowed to choose a 

target object from a set containing several famil- iar objects and one novel object. If the mice 

were capable of fast mapping (inference by exclusion), they should choose the novel target 

object (in response to the novel sample) since all other objects in the set had a previously 

established meaning. Mice perform quite well in this task, choosing the novel object at an 

average rate far better than chance. However, not all mice perform similarly, and while some 

exhibit perfect perfor- mance, some consistently make incorrect choices. The likelihood of a 

mouse’s success in this fast mapping task is correlated with their performance on other more 

elemental cognitive tasks (e.g., associative learning, spatial learning, operant learning), 

suggesting that as in humans, this form of reasoning ability is related to more general 

cognitive abilities (Wass et al. 2012). 

General cognitive abilities of mice have also been described by Galsworthy et al. (2002), who 

compared the performance of 40 genetically het- erogeneous mice across a battery of 

cognitive tests distinct from those reported in the studies described above. All measures of 

cognitive per- formance loaded positively on a principal compo- nent that accounted for 31% 

of the variance across mice, again suggesting the presence of a common influence on 

performance on all tasks. In addition, Galsworthy et al. calculated the heritability of this 

general cognitive ability in mice. (This was accomplished through a classic sibling analysis, 

which assesses the degree of relatedness between siblings on some variable of interest, in this 

case general cognitive ability.) The heritability of the general cognitive ability of mice was 

estimated at approximately 0.4 (on a scale of 0–1), suggesting a moderate genetic 

contribution to the expression of this trait. These results of Galsworthy et al. are quite 

informative. They indicate that the “intelli- gence” of mice is moderately heritable, at a level 

that is comparable to what is observed among teenage humans. Note that the heritability of 

human intelligence actually increases across the lifespan, reaching a plateau of 

approximately.80 at 50 years of age. This increase in heritability is presumed to reflect the 

interactions of genes with the environment, where persons of similar IQ become even more 

similar as they gravitate to similar cognitive challenges. Unlike typical humans, laboratory 

mice are maintained in a behaviorally sterile and homogeneous environ- ment. Consequently, 

these mice cannot select the environments or challenges that might maximize cognitive 

differences, thus constraining the gene- environment interaction. 

In addition to rodents, individual differences in a general cognitive ability have been 

observed in several species of nonhuman primates. While most studies of nonhuman primates 



have been designed to compare differences in intelligence between species (leading to a 

popular hypothesis that brain size is related to intelligence; Burkart et al. 2016), at least one 

study was designed explicitly to assess individual differences in the expression of a general 

cognitive influence within a single species. Banerjee et al. (2009) adminis- tered a large and 

diverse battery of cognitive tests to 22 tamarin monkeys (Saguinus oedipus). The cognitive 

tasks covered a wide range of cognitive skills and domains, including occluded reach, 

targeted reach (reward retrieval from a moving pendulum), adaptation to an observed change 

in reward location (a measure of executive control), reversal learning, novel object 

recognition, numerical discrimination, acoustic habituation, object tracking (an index of 

attention), social tracking (gaze at a conspecific), hidden reward retrieval after various delays, 

and a food retrieval puzzle (which was asserted to tax reasoning). Banerjee et al. observed 

positive correlations in the monkeys’ performance across all tasks. Using a type of factor 

analysis, all tasks loaded posi- tively on a common factor. The weight of these loadings (an 

index of the degree to which a vari- able is impacted by that factor) could be described as 

“weak” to “moderate.” Expectedly, the tasks with the least obvious cognitive demands 

(targeted reach and social tracking) loaded most weakly. In total, these results provide 

evidence for individual differences in the expression of a gen- eral cognitive ability among 

tamarins, and more- over, that the general factor’s influence is directly related to the level of 

the cognitive demand. 

What is the Latent Factor that Regulates Intelligence? 

Many factors, such as speed of processing or brain size, have been suggested to underlie 

variations in intelligence. However, correlational analyses have typically found only weak 

relationships between these factors and intelligence. Two clear exceptions should be noted. 

Both reasoning abil- ity and working memory capacity are strongly predictive of IQ (and as 

noted previously, the RPM intelligence test is based solely on perfor- mance on analogical 

reasoning tasks). Although it was once commonly asserted that reasoning abil- ity was the 

latent factor which regulated individ- ual differences in intelligence, it has been more recently 

hypothesized that working memory may serve such a function. In his classic textbook on 

intelligence, Mackintosh describes the full ratio- nale for this hypothesis and points out that it 

is easy to surmise the way that working memory could influence reasoning, as will be seen 

below, while it is more difficult to imagine the opposite being true (Mackintosh 1998). 

Since their inception, intelligence test batteries commonly included tests of simple memory 

span (e.g., the number of items from a briefly studied list that an individual can correctly 

recall). Some- what surprisingly though, this seemingly elemen- tal ability has only a weak 

relationship to general intelligence. In 1980, an important observation by Daneman and 

Carpenter (1980) shed light on the relationship between memory and intelligence. Daneman 

and Carpenter found that simply remembering a list of words was only weakly related to 

general intelligence (in this case, esti- mated through reading comprehension). In con- trast, if 

the same words appeared at the end of sentences, the ability to remember those words was 

strongly correlated with general intelligence. This led to the hypothesis that simple retention 

had only a small (if any) role in the regulation of intelligence, while “working memory 

capacity” had a more central role. 



While short-term memory simply holds infor- mation, the working memory system is one 

which stores information while manipulating and utiliz- ing that information (often during 

conditions of high interference) for a particular goal. Working memory is employed for most 

cognitive tasks. For instance, your ability to read and comprehend this paragraph requires that 

your remember words, synthesize the meaning of strings of words, and try to extract the 

overall message embedded in those strings of words. Obviously, your memory and 

manipulation of words and thoughts can become confused depending on the content of the 

paragraph. A similar rationale for the imple- mentation of working memory can be applied to 

virtually any task; imagine doing a mental math problem or solving a spatial puzzle. In this 

regard, an analogical reasoning problem (such as might appear on the RPM test of 

intelligence) requires the individual to hold potential solutions in mem- ory, compare the 

utility of those solutions, revise the solutions, and store the revised solutions in temporary 

memory. But while analogical reason- ing depends on the efficient application of work- ing 

memory, it is not clear that the application of working memory has any dependence on 

reason- ing abilities. It is this ubiquitous demand for working memory that has led to the 

assertion that working memory may be the basis for the overall performance on an 

intelligence test. 

Since the original report of Daneman and Carpen- ter, many studies have found evidence for 

the relationship of working memory capacity to gen- eral intelligence (for a brief review, see 

Engle 2002). 

Unlike human research, only limited work has been done to assess the relationship between 

working memory and intelligence in nonhuman animals. Some studies have found a 

relationship between working memory and intelligence in mice, but such correlations cannot 

be assumed to reflect a cause-and-effect relationship. The direc- tion of cause between 

working memory and intel- ligence cannot be determined, and moreover, both traits might be 

influenced by a third, hidden var- iable. It should be noted that the same difficulties exist 

when interpreting this relationship in humans. However, in both humans and mice, a causal 

relationship between working memory and intelligence has been explored. For instance, 

Jaeggi et al. (2008) exposed humans to intensive working memory training by having them 

per- form a “dual n-back” task for several weeks. The dual n-back task requires the subject to 

simulta- neously monitor a stream of visual and auditory cues (a sequence of visual locations 

and a sequence of auditory letters). The subject’s task is to identify matches that occur in 

each stream of information (e.g., auditory “B” matches auditory “B,” or upper right grid 

location matches upper right grid location) that occur a specific number of places back in the 

stream of information, e.g., 2-back, 3-back, and 4-back. Humans typically find this task to be 

extremely difficult (and even stressful), and the larger the n-back requirement (e.g., 4-back 

rather than 2-back), the more diffi- cult the task becomes. This task is considered to tax 

working memory capacity, and humans will typically improve across days of training; they 

may initially find 2-back to be very difficult but might eventually master 6-back. Jaeggi et al. 

observed that several weeks of such training improved working memory and had positive 

(although small) effects on intelligence test per- formance. This suggests that working 

memory has a direct causal influence on an individual’s intelligence. The work by Jaeggi et 



al. (2008) is by no means conclusive. While it has been replicated several times, others have 

failed to replicate these results, often after extensive attempts to do so (Redick et al. 2012; 

Shipstead et al. 2012). Relatedly, commercial “brain training” devices based on working 

memory training have been widely criticized as ineffective (Simons et al. 2016). Although 

this controversy has not been resolved, it is clear that training working memory in humans is 

complicated by the fact that humans regularly engage in the use of working memory outside 

of the laboratory (e.g., your comprehen- sion of this paragraph), and so any working mem- 

ory training that occurs in the laboratory is small in comparison. To this end, it might be 

useful to consider the effects of working memory training on laboratory animals that live in 

sterile cognitive environments. Light et al. (2010) developed a task to train working memory 

in mice. In this task, the mice were required to perform simultaneously in two mazes, and 

each maze required the animals to keep track of eight locations. Since the locations were 

marked by a common set of visual cues, the mice become very confused (presumably owing 

to an overload of working memory). Like n-back training, mice get better at these mazes over 

a period of weeks and, when later tested, exhibit improvements in working memory. 

Likewise, they exhibit improvements in general cognitive performance, suggesting that the 

efficacy of work- ing memory can under certain circumstances have a direct causal impact on 

a mouse’s intelligence. In the case of both humans and mice, these studies of the impact of 

working memory training on intelligence provide further evidence that intelli- gence is 

malleable. That is, although intelligence is heritable, genes interact with environmental 

experience to regulate an individual’s IQ. 

Space does not permit a detailed explanation of the neuroanatomical systems that contribute 

to the expression of intelligence or working memory. However, these kinds of analyses also 

suggest that these abilities are strongly related. Brain areas that are active during tests of 

general intel- ligence overlap considerably with brain areas active during performance of a 

working memory task (Jung and Haier 2007), and the same brain areas have been implicated 

in the processing of working memory in both monkeys (Konecky et al. 2017; Riley and 

Constantinidis 2015) and rodents (Wass et al. 2013). In total, and although this issue is far 

from resolved, our current state of under- standing suggests that variations in working mem- 

ory capacity contribute directly (at least in part) to variations in intelligence. 

Conclusion 

Humans and nonhuman animals exhibit individ- ual differences in their ability to “reason, 

plan, solve problems, think abstractly, comprehend complex ideas, learn quickly and learn 

from expe- rience” (Neisser et al. 1996). This complex of abilities is referred to as 

intelligence. In both humans and animals, this trait can be assessed through batteries of 

cognitive tests, and in humans, these tests give rise to an intelligence quotient (an “IQ score”) 

which quantifies an indi- vidual’s performance relative to those of a similar age. Studies in 

nonhuman animals, most remark- ably in primates and mice, have utilized diverse batteries of 

cognitive tests to measure something analogous to IQ. The intelligence in these animals 

varies among individuals and seems to be corre- lated with processes such as reasoning and 

work- ing memory. Recent research in both humans and mice suggest that working memory 

training might make causal contributions to the improvement of IQ. Those findings have not 



only theoretical implications concerning the structure and neuro- biological insanitation of 

intelligence, but it also applications. 
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